CONDITIONS FOR DIFFERENT STEADY STATES
IN AN ADIABATIC CONTINUOUS-FLOW REACTOR
WITH A CATALYST LAYER '

o A, Chernova

An adiabatic reactor with continuous flow and with a stationary fine-grained catalyst
layer is examined. The mixture which passes through this layer undergoes chemical
reaction on the surface of the grains. The reaction there is accompanied by liberation
of heat and change in the concentration of the mixture with subsequent heat and mass
exchange between this surface and the flow. The rate of the reaction depends on the
temperature and concentration of the reagents, in which the relationship to the tem-~
perature is markedly nonlinear.

Similar systems are widely used in chemical technology and also in heterogeneous combustion. A
special feature of these systems is the nonuniqueness of the steady states. This nonuniqueness can depend
on a number of causes, especially longitudinal mixing in the flow when the length of the reactor is limited
{which is examined in a number of works, for example in {1-5]), heat removal through the walls (which was
shown in [5, 6]), and also resistance to heat and mass exchange between the surface of the grains and the
flow. The latter leads here to the existence of principally different steady states: in the case of kinetic
conditions, for example, the temperature in the flow and in the catalyst are similar, but diffusion conditions,
on the other hand, are accompanied by strong heating up (ignition) of the catalyst. Hence the transition
from one sysfem to the other usually occurs with a jump.

In practice, kinetic conditions are used in some cases, and in other cases diffusion conditions are
used (in some industrial processes the temperature of the catalyst and that of the flow differ by hundreds
of degrees, but in the majority of cases, on the other hand, a significant heating of the catalyst is inad-
missible).

Qualitative research on the corresponding steady-state equations is carried out below, with a view
to determining the regions of variation of the parameters in which there exists each of the conditions men-
tioned above, especially regions in which both kinetic and diffusion conditions could take place. and also
regions in which, on the other hand, there is not one stable steady state. Regions are also shown in which
what are known as upper diffusion conditions are possible, in which the temperature of the catalyst exceeds
the adiabatic heating of the reacting mixture in the case of full conversion.

A similar problem for an individual grain (or cell), with the assumption that the temperature and
concentration in the main flow are known, was investigated previously (for example, in [7-10}). In [11~-13]
numerical integration of the corresponding nonsteady-state equations for the whole reactor was carried
out,and the possibility of plurality of steady conditions, caused by the nonuniqueness of steady states in a
single grain, was shown,

We will also note that in research and caleulation of chemical reactors with continuous flow and with
a stationary fine-grained catalyst layer, no distinction is made between the values of the temperature and
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concentration in the main flow and on the surface of the grains. This reduces the number of equations, but
this is permissible only for kinetic conditions. In some works which deal with what are known to be dif-
fusion conditions, it is assumed that full conversion of the substances which are found on the grains takes
place. In this case the number of equations is also reduced,and the latter will be linear.

The results given below help in evaluating the limitations of the applicability of both the above-men~
tioned assumptions, the first of which, in particular, excludes the possibility of "ignition" of the catalyst,
and the second excludes the possibility of its "extinction."

The steady-state processes in the reactor examined are described by a system of equations of con-
vective heat transfer and diffusion in the basic flow taking into account the heat and mass transfer from
the surface of the grains and the equations of the thermal and material balance of the grain (it is assumed
that an exothermal reaction of the first order takes place there). If a number of usual [8-14] simplifying
assumptions are adopted, especially the constancy of the physical properties, the quasihomogeneity of both
phases, the uniformity of the conditions in the lateral direction, and also the absence of thermal conduction
in the layer itself (in [15] it is shown, for example, that in the case of liquid flow and in the case of suffi~
ciently high speeds of the gas flow it is possible to neglect it), then the above-mentioned system can be writ-
ten in the form

'u%—w%—{——p?—(h—T)S-_—.O, D%C—z-—w—jg+gl(cl—0)s=o @)
o1 (T1 — T) = HC,K (Ty), B1(C,— C) = — C,K (Ty) (2)

z=0, wl — %dT/dz = wl_, wC — DdC/dz = wC_ (3)

@=L, dT/dz =0, dC/dz = 0 (4)

Here, T and C are the temperature of the mixture and the concentration of the determining reagent
in the main flow, T; and C; are the temperature and concentration on the surface of the catalyst grains,
x is the three-dimensional coordinate, v and D are the effective coefficients of the thermal conductivity and
diffusion in the flow, w is the speed of filtration, oy, By are the coefficients of heat and mass transfer from
the surface for unit volume, T. and C_ are the temperature and concentration at a distance before the cat-
alyst layer, H>0 and K(T;) are the heat and rate constant of the chemical reaction, which usually has the
form of an Arrhenius relationship, that is,
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K (Ty) = keexp [— E | RTy] (5)
where E is the energy of activation and R is the universal constant,

We will make the following substitution of variables:

9 0 s z—L (T—TLHE _(h—TJ)E
u:—,\;—, U:T, ?):T, £ = ppo , ﬁ=MRT_2 — e_._———-—————RT_z (6)
HE i Qi
s=Ch, h= ScHTE =K@ w,=Ch 1= u,.

Here, 4 and 6 are the dimensionless temperature in the flow and on the surface of the grains, uy, is
the adiabatic initial heating of the mixture in the case of full conversion, and 4, is the maximum value of
4, reached at the exit from the layer (unknown magnitude). We will note that 0= $,=<u;,, so that 0= y=I1.

Equations (1) and (2) have the first integral which, taking (3) and (6) into account, can be written in
the form

du dv U % D
o Hhg ek S0 (o= b=y (7
In accordance with (6), (7), and (4) we obtain
U=tm v=Up (1 —y)/y for §=0 (8)

We will write (1) to (4) in new variables, taking as the unknown functions p=adu/dg, v,and ¢, and we
will take the value u as the independent variable. Here we will substitute the second equation in (1) by the
integral (7) and the boundary condition (4) by the condition (8); we will eliminate Cy from (2). Then the prob-
lem considered can be presented in the form

dp _,_ abre)  dv @4oY—w, 1 & a (9
I vy i Ty
P ) =al6(® ) —0, ¢=0— osk@O)p+k®)] (10)
u:um’ P:‘)’ Dzum(l‘—'T)/Tv EZO: u=—=np, E:—l (11)
Here

s b 8

0= ““m’ s B=PuST, s:-%— v h= B®) =exp s
o . {12)

bo: 7 ,l::”ﬁ’

The second relationship in (10) is an implicit form of the function § (8, s) through which the effective
rate of the reaction ¢ (4, s) in (9) is determined in accordance with the first relationship in (10).

In real processes by6 is usually very small, so that without introducing large errors, k=e can be
adopted. Moreover, if the second equation in (9) is integrated, considering p to be known, it is then pos-~
sible to obtain the following relationship:

.
u 1 i d
v—_———,;"—-u-i-(T»-i) S oxp [-_ —ﬂ]du,

U

Ap

ge3 B

Hence

s=s5 for A=1, 5<s{gs/h for A<t (5= um—B)

sa/hlnels<ss for A>1 w=u [A+ (1 —M)1]/h—8/4) (13)
Then, when A=1 (which can be adopted quite often), the problem (9) to (11) is reduced to the form

dp ag (ur) a

d
=T 71%—27, ¢=0a[0(D) —b] {14)
@ (6) B (¢, —6)
G =0 T @:'B—e;e—_{_——i—_:g- (15)
W=Um, p=0,E=0; n=p, E= | (16)
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TABLE 1

Fig. [Region of variation of the parameters
I

1 1, ae; 3, a U < (A4, B, 9), L&, um < 4, up, < B1
(45, un<

2 | 1,be;3,b B>, 003 Al Uy < B

3 1, ce; 8, ¢ B> e?, 5« Ga, B < ttyy < (B2 B)

4 1, bf; 8, bf B>e <62, (B, 4) up<B

3 1, af; 8, af B> sa (s og Bri<up< {4, 8)

6 1, de; 3, d B>, s oy, Bg<um<®01‘
BLe®, 62, A< Uy

7 2, af; 4, af B> a1<{o <oy (A e)<um<Bz

8 | 2, ae;4,ae B>é, 2L <Css, 8<um<(A Bs)

9 | 92 bd; 4,d B>e% 5>, (e Bl)<um< 2

10 | 2 be; 4, e {3>€2 82> 04 B Uy <A

11 2,bc; 4, ¢ B> e 0>y 8 < up< Bior
§3<e2 G2, B Uy < 4

12 2, bi; 4, f um > (4, B, 8)

The denominator in (15), when o<1, does not become zero, but when

; ,'I‘«y /V o> 1, it bas one root © [see (18)]. We find (Figs. 1 and 2) from (15) that
M %/ 9@ 0 =T oo for 8> up, 9@+ 0)=too for 8< upy,
| 4 $(6) < 0 for 08<C (uy, B), O () > up for 0&(uy, 8),
] B (0) < um = (80— um) /(0 — 1) for 82> (um, 8), ¢ (um) = upy
2§ ' X
We note that when o<1 it is possible fo assume that @=eo,
The extreme values of the function ¢ (@) correspond to the points of the
18 intersection of the curves
P “\G_J“““"LJ pr(@) =B+BT (1 —0)e¥,  pe(0) =0 (um—20"1 1 —0)° (17)
7 Z
/ £ = I These curves osculate in the case of uy =A (g, ) at the point 9 =T (8),
Fig. 5 £ but if §>1, then again in the case of upy, =® (o, B) at the point 6 =® (¢, B). Here
Ao, p)=Inp+ 40— 2, T(B)=1Inp, ©(s B = Inp— Inw— 1) (18)

Hence, on the basis of the form of the curves iy and p,, it can be concluded that if o<1, thon when
upy, <A the latter do not intersect, that is, 4 (§) does not have extreme values (Fig. 1, curve a, when @=w),
In the case uy, >A there are two intersections: when 8 =6* and when 6 =6°, that is, ¢ () will have two ex-
treme values: in the case of § =6* it is maximum (since d#/d@ >0 when 0 =—od,and for 6 =¢° it is minimum
(Fig. 1, curves b, ¢, and d when @=),

Similarly, if 1<o<2, then when up <A the curve # (#) has one extreme value {maximum) in the case
of § =0**, Here the curve consists of two branches: a and e or a and { (Fig. 1, ae, af). In the case A<uy<
®, there are three extreme values: the maxima inthe cases # =6*, 0 =6** | and the minimum when 8 =6° (Fig.
1, be, bf, ce, cf, de, df), and when uy, > ® there is one extreme value (maximum) when 0 =0* (Fig. 2, af, bi).

Here ; 19
0 < T(B), T(B)<CO° <B(o,P), O**>0(0,p) (62 19

If 0> 2, then, similarly, when u,, <®, we have Fig. 1, ae, af; when @ <uy, <A, we have Fig. 2, ac, ad, ae,
be, bd, be; and when u. > A, we have Fig. 2, af, bf. Here
0t <0 (0, B) B(o, PO ITH), **>TH (>2)
We will investigate the position of the points4° =4 (8°), #*=4 (§*), and $¥*=g(8**) (Figs. 1 to 4).
~accordance with (15), with increase of uy or ¢ and also with decrease of 8 (this also means ¢ in the case
of constant o), the left branch of the curve 4 (§) in Figs. 1 and 2 drops, but the right branch rises. There-

fore, in accordance with the preceding,
max 0% = max §° = M, min9° = max G** = My for v, <8 (s<2)
matﬂ" = max O** = M;, max 9* = min® & = M, for um> e (c>2:) (21)
M1~—1n13—-2-*1‘)(7‘) for: wy, == A, My=0—B1° —1=20(6) for u,=0
Since in the case uy, >®, 0<2 and in the case U, <O, cr>2‘, the curve 4 (9) has only one extreme value,
which, on the basis of (21), can be written
BrE GO B* for up < 8 (Figs. 1,3), 9% <90 < 6** for u, >0 (Figs. 2, 4) (22)
Hence it follows in particular that & ($) and, consequently, also ¢ (#) have no more than three values.
Moreover, in accordance with (21) and (22)

(20
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B0 0, 9% L 0, B** < 0 for B e (23}

If B >e?, then the maximum values of the magnitudes #*,4° for o<2 and ¢°, $** for ¢ > 2, obtained when
upy =A are positive., With increase of uy, in the first case and with decrease of uy, in the second case, these
magnitudes decrease. The values uy, =B and 6 =0, at which one of the magnitudes$°, 8%, or 4** becomes
zero, that is, $=4'=0, are determined in accordance with (15) from the following relationships:

B=@— 1716, b=(— 170 B=bs (24)

From (24) for B >e? we obtain two values Qéi) {B)>2 and 69(2) {8) <2, and through these we also obtain
4<by (B)<b, (B) and B,and B, which correspond to them, We will note that in order to construct graphs 8 ,{,2)
(B) and by , (B) it is sufficient to construct the corresponding curves # (84) and 8 (b) from (24), where

B(B) = [Yeb (1 4 VI =455 — 1} exp (1o (1 4 VI 557)] (25)

It is possible also to obtain the following approximated expressions for By g8
By~ oot {Inf + 4 + In (Inf + D], By o B+ 4 + 3, (Bt 1)77] (26)
From (18} and (24) it can be found that
8,0 <8Pl for ooy (B O < 8,W for o> o (B)
B2 8, B > 8 for 0, < o< 0y @7
Here 0, and o5 are functions obtained from
Bloy= (o0~ explo/(oc— 1)
where 0<2 and o> 2, respectively.

" From (27), (19), and (20) it follows that if o <oy, then when uy, =B, éﬁe‘} =8 % #°=0, and when vy, =By,
60) =0*, $*=0, If oy<0<a;, then, in distinction from the case where uy, =By, 8,1 =6**, $*¥*=0. If o>0;,
then when up, =By, 6§0)=0%%, $**=0, and when U = By, o=, s°=0,

Similarly we will obtain {0y, (B) given in Fig. 5)
ACB <88 fox 0oy, A< B<CBLB for g,< o< oy
21<A-<(9<B2 for o,<Co<C2 B <O <ALE, f(:; 2 o< o4 , (28)
1 < BB, <A for 0,< o< 0 8By < By« 4 for o>05 (f>e
A8 for 0<2, 064 for 6 >2 (<Y
In accordance with (27) and (28), on the basis of the statement given above it is possible to establish
‘twelve different types of curves # (6) and consequently also § ($) (Figs. 1 and 2) and also ¢ () from (14)
(Figs. 3 and 4), which include all the possible values of up, o, and  (Table 1). We note that ¢ (:8) as seen
from the last relationship of (14) is expressed through 6 (#) in an elementary manner, In particular, it fol-
lows at onee from this that 6 (#) and ¢ ($) have generally vertical tangents (where $=48%, 4°, $**). For sim-
plicity the points uy,, ®, and a uy, in Figs. 1~4 are fixed. Hence it is necessary to mention that in the case
of different uy,, ®, and a they have a different value, The maximum @ and the minimum ¢, of the effective
rate of reaction ¢ (#), reached at ¢y and %, are equal in accordance with (14) and (15) to the maximum and
minimum of the function & (0) from (15), obtained with ; and 9,, that is,

Pup=eXpOyy 0,0y, ~Bolexpl,  expd, , = (8;,—u, + HB(E— )

Hence, for example, the result is that when um > ® (Fig. 4) the function ¢ (8) does not have extreme
values. ,

From Figs. 1 to 4 it follows that in the case ) =u=uy,, i.e., where 0:s9=%umy, the functions 6 ($) and
@ () in (14) are determined for all 0 <y=1. Hence in cases 1, 6, 11, and 12 (Table 1) they are single valued
for any v, and in cases 2 and 10 they are single valued only for y<é °/um. In the remaining cases the curves
¢ {8) and ¢ (#) have three branches at certsin intervals of variation of 4.

In accordance with [7, 9, 11], the steady-state heatings 0 of the catalyst surface are stable if d6/dd > 0,
and unstable if d6/ds8<0.

Hence we find that if uy, < @ (Figs. 1 and 3), then one branch § (8) and, consequently, also ¢ (%) are al-
ways stable, and of the three only two are stable: the first below {;) corresponds to the kinetic conditions
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in which 6 and 4 are close to each other, and the other (¢q) corresponds to diffusion conditions, accompanied
by strong heating ¢ of the catalyst (if § <upy,, we will call them lower diffusion conditions, and if 8> uy,, we
will call them upper diffusion conditions).

If upy, > ©® (Figs. 2 and 4), then of the three branches only one is stable: the kinetic branch in cases 7
and 8 and the upper diffusion branch in cases 8-10. One branch is always unstable (cases 11 and 12).

Thus in cases 11 and 12 there is not one stable steady-state condition in the reactors examined.

For each steady state, 6 ($) has a fully determined value, and therefore in accordance with the
preceding, 6(#) and consequently ¢ ($) in (14) also are represented here as single-valued, bounded, smooth
or piecewise-smooth functions with discontinuities of the first kind (corresponding to the possible change-
over of 6 ($) at certain sections of the variation of # from one of the existing branches to the other).

It can be shown that in the case of any function ¥ (uy, vy) >0 of the type indicated above, which is de-
termined over a corresponding interval, there exists a single solution of the inverse problem (14) and (16)
for the case in which vy (i.e., the maximum temperature in the layer or the finite concentration) is given
and the length of the layer I is determined (for y=1, additional requirements are applied, which, in the case
A=1, when §=¢ (uy), are reduced to ¢ (uy) =0, ¢' (uy) <0). For the smooth function P (wy, vy) this was shown
in [5].

In the case of continuous variation of v, the values I (y) vary continuously, and, if ¥ (uy, vy) is deter-
mined for any 0 <y=1, then with variation of y from 0 to 1 the value of 7 (y) covers the whole interval
[0, ©]. Consequently, the solution of the straight problem ( is given, v is determined) always exists, i.e.,
in reactors of arbitrary length at least one steady state is possible. If ¥ (uy, vy) is determined, for ex-
ample, only in the case of 0 sy=+y |, thenthe corresponding conditions exist only in the case I<I;, where
ly=max I (y) for 0sy=vy,.

As a result we find that in case 1, in reactors of arbitrary length I, only kinetic systems in which
the catalyst temperature 6 and the temperature of the flow 4 are close to each other are realized. These
conditions, which are usually low-temperature conditions, are used more often in chemical technology.

In case 5 the kinetic conditions also exist at any 1. Together with these, in the case I <1** (a) upper
diffusion conditions are also possible; these are accompanied by very strong heating (6 >uy,) of the catalyst
(I**=max I (y) when 0<y<&**/um, ¢=¢q (wy). Moreover, there are still infinitely many mixed steady
states, in which case, in the section 0<$<4** along the layer of the catalyst, the kinetic conditions alter-
nate with the upper diffusion conditions. In other words in this case, in realizing kinetic conditions there
is the danger of ignition of separate parts of the catalyst (owing to random disturbances). In realizing the
upper diffusion conditions, there is, correspondingly, a danger of extinction. This is confirmed by the nu-
merical calculations carried out in [13].

In cases 2-4, 7, and 8 the kinetic conditions exist only in reactors whose length is I <Z* (a) (I*=max
()>1 (& */up,) when 0<y<#*/um, p=¢k (uy). Hence in case 7 there are no other conditions, and in the case
1> 1* the steady-state conditions are generally impossible (without calculating they are known to be unstable),
and explosion takes place. In case 8, as distinet from case 7, when a>a** (7) and I° (a) < I <I** (a) upper
diffusion conditions are still possible (a**, I° are certain values which can be determined). In case 3,lower
diffusion conditions are still possible together with kinetic conditions (when I<I¥) in reactors of arbitrary
length Z; under these diffusion conditions there is considerable heating of the catalyst, but it does not ex~
ceed the adiabatic heating of the reacting mixture in the case of complete conversion (8,° <8 <up). These
are also mixed steady states in which the above-mentioned conditions alternate on the corresponding paris
of the catalyst. Case 2 differs from case 3 in that here there are the kind of 7° (a) and a* (1) values for which
only kinetic conditions are possible when 7 < I° butfor which only mixed conditions are possible when =
1% a<a*, In case 4, as distinct from case 2, there are also upper diffusion conditions together with kinetic
conditions when I<I**, (It can be shown that lower diffusion conditions are absent when 7<1*%) The pos-
sibility of mixed states with changeover to the upper diffusion condition also appears.

In case 6 there ave only lower diffusion conditions in reactors of arbitrary length.

In case 9 the steady-state conditions, which are upper diffusion conditions here, are possible only
in reactors of length I < I**, and in case 10 they are only possible if a>a** and I°<I<7**.

On the basis of Table 1 and taking into account (18), (24)-(26), (12}, and (6), it is possible, in par-
ticular, to evaluate the limits up to which either the concentrationC_ of the determining reagent in the initial

670



flow must be reduced, the effective coefficients By and @ of the heat and mass transfer from the surface of
the grains must be increased (for example, by turbulence of the flow), or the activity of the catalyst (k)
must be reduced, so that in the examined system only kinetic systems are realized. (In the first case the
value up, is reduced, but in the second and third cases A, ©, By , are increased.)

We will also note that the values 6* and 4%, for example, can be described here as ignition temper-
atures of the catalyst, since these are maximum temperatures which can be reached by the catalyst and
the flow, respectively, in the case of a kinetic condition. In the case of higher temperature values, either
only diffusion conditions can be realized (cases 2-4) accompanied by considerably greater heating ignition
of the catalyst (0> 8°, where 8°>0%) or, in general, steady-state conditions become impossible (case 7) and
explosion takes place (unlimited increase of 8). The values 8° and 4° in cases 2 and 4 can be describedcor-
respondingly as the extinction temperatures of the catalyst.

If A1, then by using the inequalities {13) it is possible to obtain upper and lower estimates for the
existence of different conditions.
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