
C O N D I T I O N S  FOR D I F F E R E N T  S T E A D Y  S T A T E S  

IN AN A D I A B A T I C  C O N T I N U O U S - F L O W  R E A C T O R  

W I T H  A C A T A L Y S T  L A Y E R  

E.  A.  C h e r n o v a  

An adiabatic reac tor  with continuous flow and with a stationary fine-grained catalyst 
layer  is examined. The mixture which passes through this layer  undergoes chemical 
reaction on the surface of the grains. The reaction there is accompanied by liberation 
of heat and change in the concentration of the mixture with subsequent heat and mass 
exchange between this sin:face and the flow. The rate of the reaction depends on the 
temperature  and concentration of the reagents,  in which the relationship to the tem- 
perature is markedly nonlinear. 

Similar systems are  widely used in chemical technology and also in heterogeneous combustion. A 
special feature of these systems is the nonuniqueness of the steady states. This nonuniqueness can depend 
on a number of causes,  especially longitudinal mixing in the flow when the length of the reac tor  is l imited 
(which is examined in a number of works, for example in [1-5]), heat removal through the walls (which was 
shown in [5, 6]), and also resis tance to heat and mass exchange between the surface of the grains and the 
flow. The lat ter  leads here to the existence of principally different steady states: in the case of kinetic 
conditions, for example, the temperature in the flow and in the catalyst a re  similar,  but diffusion conditions, 
on the other hand, are  accompanied by strong heating up (ignition) of the catalyst. Hence the transition 
from one system to the other usually occurs with a jump. 

In pract ice,  kinetic conditions are  used in some cases,  and in other cases diffusion conditions are 
used (in some industrial processes  the temperature of the catalyst and that of the flow differ by hundreds 
of degrees,  but in the majority of cases,  on the other hand, a significant heating of the catalyst is inad- 
missible). 

Qualitative r e sea rch  on the corresponding steady-state equations is car r ied  out below, with a view 
to determining the regions of variation of the parameters  in which there exists each of the conditions men- 
tioned above, especially regions in which both kinetic and diffusion conditions could take p lace  and also 
regions in which, on the other hand, there is not one stable steady state. Regions are  also shown in which 
what are  known as upper diffusion conditions are  possible, in which the temperature of the catalyst exceeds 
the adiabatic heating of the reacting mixture in the case of full conversion. 

A similar  problem for an individual grain (or cell), with the assumption that the temperature and 
concentration in the main flow are  known, was investigated previously (for example, in [7-10]). In [t1-13] 
numerical integration of the corresponding nonsteady-state equations for the whole reac tor  was car r ied  
out, and the possibility of plurality of steady conditions, caused by the nonuniqueness of steady states in a 
single grain, was shown. 

We will also note that in r e sea rch  and calculation of chemical reac tors  with continuous flow and with 
a stationary fine-grained catalyst layer,  no distinction is made between the values of the temperature  and 
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concentra t ion  in the ma in  flow and on the su r face  of the g ra ins .  This  r educes  the number  of equations,  but 
this is p e r m i s s i b l e  only fo r  kinetic condit ions.  In some works  which deal with what a re  known to be dif- 
fusion conditions,  it is a s s u m e d  that full convers ion  of the subs tances  which a r e  found on the gra ins  takes  
p lace .  In this case  the number  of equations is a lso  reduced,and the l a t t e r  will be l inear .  

The r e su l t s  given below help in evaluating the l imi ta t ions  of the appl icabi l i ty  of both the a b o v e - m e n -  
tioned as sumpt ions ,  the f i r s t  of which, in pa r t i cu l a r ,  excludes the possibi l i ty  of "ignition" of the ca ta lys t ,  
and the second excludes the possibi l i ty  of its "ext inct ion."  

The s t eady - s t a t e  p r o c e s s e s  in the r e a c t o r  examined  a re  desc r ibed  by a s y s t e m  of equations of con- 
vec t ive  heat  t r a n s f e r  and diffusion in the bas ic  flow taking into account the heat  and m a s s  t r a n s f e r  f r o m  
the su r face  of the g ra ins  and the equations of the t he rma l  and m a t e r i a l  balance of the gra in  (it is a s s u m e d  
that  an exo the rmal  r eac t ion  of the f i r s t  o rde r  takes  place there) .  If a number  of usual  [8-14] s implifying 
assumpt ions  a r e  adopted, e spec ia l ly  the constancy of the physical  p rope r t i e s ,  the quasihomogenei ty of both 
phases ,  the uni formi ty  of the conditions in the l a t e r a l  direction,  and a lso  the absence  of t he rma l  conduction 
in the l aye r  i t se l f  (in [15] it is shown, for  example ,  that in the case  of liquid flow and in the case  of suffi-  
c ient lyhigh speeds  of the gas  flow it is poss ib le  to neglect  it), then the above-ment ioned  s y s t e m  can be w r i t -  
ten in the f o r m  

d2T dT ~1 T1 d~C dC ~ - ~ - - - ~ - ~ x  + -b~ -< - r ) s _ o ,  D ~ - W z ~ - - w - - ~ i + ~ ( C ~ - - C ) S = O  (1) 

czl (T i  - -  T)  = H C i K  (T1), 61 (Ci  - -  C) = - -  C i K  ( T , )  (2) 

x =  O, w T - -  n d T / d x =  w r _ ,  w C - -  D d C / d x  = wC_  (3) 

x = L ,  d r / d x  = O, d C / d x  = 0 (4) 

Here ,  T and C a re  the t e m p e r a t u r e  of the mix tu re  and the concentra t ion of the de termining reagen t  
in the main  flow, T 1 and C 1 a re  the t e m p e r a t u r e  and concentra t ion on the sur face  of the ca ta lys t  g ra ins ,  
x is the th ree -d imens iona l  coordinate ,  ~ a n d  D a re  the effect ive coeff icients  of the t he rma l  conductivity and 
diffusion in the flow, w is the speed of f i l t ra t ion,  al,  fll a r e  the coeff icients  of heat and m a s s  t r an s f e r  f r o m  
the su r face  for  unit vo lume,  T_ and C_ a re  the t e m p e r a t u r e  and concentra t ion at  a d i s tance  before  the ca t -  
a lys t  l aye r ,  H> 0 and K(T 1) a r e  the heat  and ra t e  constant  of the chemica l  react ion,  which usually has the 
f o r m  of an Ar rhen ius  re la t ionship ,  that  is,  
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K (T1) = koexp [-- E / RTI] (5) 

w h e r e  E i s  the  e n e r g y  of a c t i v a t i o n  and  R i s  the u n i v e r s a l  cons t an t .  

We w i l l  m a k e  the  fo l lowing  s u b s t i t u t i o n  of v a r i a b l e s :  

0 s z --  L (T --  r_) E (r~ --  T_) E 
' u - - - T '  u = - T '  v = T '  ~ -  w,~ ' ~ - -  RT_ ~ , O= RT_~ 

HE ~ 0+ ( 6 )  
s = C h ,  h - -  pcl:lT_~ , .~ = K ( T _ ) S ,  u m = C _ h ,  "~= Um 

H e r e ,  $ and  0 a r e  the d i m e n s i o n l e s s  t e m p e r a t u r e  in the flow and  on the s u r f a c e  of the  g r a i n s ,  u m is  
the  a d i a b a t i c  i n i t i a l  hea t i ng  of the m i x t u r e  in  the  c a s e  of  ful l  c o n v e r s i o n ,  and  ~+ is  the  m a x i m u m  v a l u e  of 
~ ,  r e a c h e d  a t  the  e x i t  f r o m  the  l a y e r  (unknown m a g n i t u d e ) .  We wi l l  note tha t  0-< 4+-<urn ,  so  t ha t  0-< ~/-<1. 

Equa t i ons  (1) and  (2) have  the  f i r s t  i n t e g r a l  which ,  t ak ing  (3) and  (6) into accoun t ,  c a n  be w r i t t e n  in 
the  f o r m  

du dv urn ( ~ D )  
~-~T + ~ - ~ T - u - ' + . - T  - = ~  ~ =  ~ ' ~ = - ~ -  (7) 

In a c c o r d a n c e  w i th  (6), (7), and  (4) we  ob ta in  

u =  u m, u =  u m ( t - - y ) / y  for ~ =  0 (8) 

We will wr i te  (1) to (4) in new v a r i a b l e s ,  taking as the unknown functions p = adu/d~,  v, and ~, and we 
will  take the value u as  the independent va r i ab l e .  Here  we will substi tute the second equation in (1) by the 
in tegra l  (7) and the boundary condition (4) by the condition (8); we will e l iminate  C~ f r o m  (2). Then the p rob-  
l em cons idered  can be p re sen t ed  in the f o r m  

dp __ t  a~ (u'L v?) dv __ (u + v) T ~ u m ~ d~ _ a 
du p% du ~.p~( ~. ' du p 

H e r e  

r ( e ,  ~) = a [o ( 8 ,  ~) - ~1,  ~ = o - ask(o) / [~  + ~ (e)l 

u = u  m, p = 0 .  v = u ~ ( i - - ' r ) / %  ~=0;  u = p ,  ~ - = - - l  

(9) 

(i0) 

(11) 

alS'~ ~ b O 

RT_ L (12) 
bo = - -  l ~ - -  E ' w'~ 

The  s e c o n d  r e l a t i o n s h i p  in  (10) i s  an i m p l i c i t  f o r m  of the  func t ion  0 (~, s~ t h r o u g h  w h i c h  the  e f f e c t i v e  
r a t e  of  the  r e a c t i o n  r (~, s) in (9) i s  d e t e r m i n e d  in a c c o r d a n c e  wi th  the  f i r s t  r e l a t i o n s h i p  in (10). 

In r e a l  p r o c e s s e s  b00 i s  u s u a l l y  v e r y  s m a l l ,  so  t ha t  wi thou t  i n t r o d u c i n g  l a r g e  e r r o r s ,  k = e  0 can  be 
a d o p t e d .  M o r e o v e r ,  i f  the  s e c o n d  equa t ion  in (9) is  i n t e g r a t e d ,  c o n s i d e r i n g  p to be known, i t  is  then  p o s -  
s i b l e  to ob ta in  the fo l lowing  r e l a t i o n s h i p :  

~n ~rn u, 

_ I _  It It 

s = s ~  for ~ , = t ,  s ~ l < ~ < ~ / z  for x < l  ( a = u m - 8 )  
s l / A < s ~ < s < s x  for ~ = u , ~ [ ~ . - F ( t - ~ . ) ' r ] t ~ - O / ~ )  (13) 

Hence  

Then ,  when  X = l  (which can  be a d o p t e d  qui te  of ten) ,  the p r o b l e m  (9) to (11) is  r e d u c e d  to the  f o r m  

~'~-Pu = t aq~ (uT) d~ a 
p ~  , du - -  p , ~ =  ~ [ ~  ( 1 4 )  

o(O) ~ (~m-O) 
~ = 0 - - - -  o =  

u .' ~ e - ~ + t - - a  

u =  um, p = 0, ~ = 0; u =  p, ~ = - -  l 

(15) 

(16) 
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T A B L E  1 

Fig. Region of variation of the parameters 
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The denomina to r  in (15), when q<  1, does not b e c o m e  z e r o ,  but when 
a > l ,  it has  one r o o t  O [see (18)]. We find (Figs .  1 and 2) f r o m  (15) that  

O(O-q-O) ~ o ~ .  for O>urn, @(0--1-0)= ::1:oo for O<um,  
@ (0) <: 0 for O< (ura, 0), ~ (0) > urn for OE(ura, 0), 

( O ) < u m - - ( O - - u m ) / ( a - - l )  for 0>(um, e),@(Um)=Um 

We note  that  when  (r< 1 it  is  poss ib le  to a s s u m e  that  O=.o. 

The extreme values of the function ~ (0) correspond to the points of the 
intersection of the curves 

I~ (0) ~- ~-~- ~-~ (t ~ Z) e20 , [x~(O)=z(Um~2~-~-{-t--O)e 0 (17) 

These  c u r v e s  oscu la te  in the c a s e  of u m = A  (a, fl) a t  the point  0 =T  (fl), 
but if 6 > 1 ,  then aga in  in the c a s e  of U m = O  (a, fl) a t  the point  0 =O(a ,  fl). He re  

A ((L ~) = l n ~ - 4 a  - 1 -  2, T(~) = In~, O(a ,~ )=  ln~-- ln(a-- i) (18) 

Hence ,  on the bas i s  of the f o r m  of the c u r v e s  gl  and #2, it can  be conc luded  that  ff a < l ,  them when 
u m < A  the l a t t e r  do not  i n t e r s e c t ,  tha t  is ,  ~ (0) does not have e x t r e m e  va lues  (Fig.  1, cu rve  a, when | 
In the c a s e  u m > A  t h e r e  a r e  two i n t e r s e c t i o n s :  when 0 =0" and when 0 =0% that  is ,  ~ (0) wil l  have  two ex -  
t r e m e  v a l u e s :  in the c a s e  of 0 = 0 '  it is  m a x i m u m  (s ince d~ /d0  >0 when 0 =-oo) ,and  fo r  0 =0 ~ i t  is  m i n i m u m  
(Fig.  1, c u r v e s  b, c, and d when |  

S imi la r ly ,  if 1 < a <  2, then when urn< A the cu rve  ~ (0) has  one e x t r e m e  va lue  (maximum)  in the case  
of 0 =0"*. Here  the cu rve  c o n s i s t s  of two b r a n c h e s :  a and e o r  a and f (Fig.  1, ae ,  af). In the c a s e  A < u m <  
| t he re  a r e  th ree  e x t r e m e  va l ue s :  the m a x i m a  i n t h e  c a s e s  O = 0 ' ,  0 =0"* ,  and the m i n i m u m  when 0 =0 ~ (Fig.  
1, be,  bf, ce ,  cf,  de, dr), and when urn> | t he r e  is one e x t r e m e  value  (maximum) when 0 =O* (Fig.  2, af, bf). 

H e r e  
0* < r (~), r (~) < 0 ~ < o(~, ~), o** > s (~, ~) (~ < 2) (19) 

I f  q > 2, then, s i m i l a r l y ,  when Urn < | we have Fig.  1, ae, af; when | < u m < A, we have Fig.  2, ac, ad, ae, 
bc,  bd, be; and when u m > A, we have Fig .  2, af, bf. Here  

0* < 0  (a, ~), o ( ~ , ~ ) < e ~  T(~), 0 * * > T  (~) ( a>2)  (20) 

We wi l l  inves t iga te  the pos i t ion  of the p o i n t s $  ~ =~ (0~ v ~* =~ (0"), and ~** =~ (0 **) (F igs .  1 to 4). In 
a c c o r d a n c e  wi th  (15), wi th  i n c r e a s e  of Um o r  a and a l so  wi th  d e c r e a s e  of fi (this a l so  m e a n s  a in the case  
of cons t an t  ~), the lef t  b r a n c h  of the cu rve  ~ (0) in F igs .  1 and 2 d rops ,  but the r igh t  b r a n c h  r i s e s .  T h e r e -  
fo re ,  in a c c o r d a n c e  wi th  the p reced ing ,  

max @* ~ max @~ = M1, min~~ for u m~<O (z<2)  
max ~* ---- max ~** --~ M1, max ~* := Inin ~ @ ---- M~ for u m >/e (z > 2*) (21) 

MI~--ln~2-----@(T) for :um~A,  M~--0--~-lee -- t ---- ~ (0) for um=O 

Since in the c a s e  u m > | or<2 and in the c a s e  urn< | or>2", the cu rve  ~ (0) has  only one e x t r e m e  value ,  
which,  on the bas i s  of  (21),  can  be wr i t t en  

~** < ~0 <: t~* for urn < O (Figs. t,3), @* < 0  ~ <~** for u m > 0 (Figs. 2, 4) (22) 

Hence it foI lows in p a r t i c u l a r  tha t  0 (,~) and,  consequent ly ,  a l s o  ~ (~) have no m o r e  than t h r e e  v a lu e s .  
M o r e o v e r ,  in a c c o r d a n c e  wi th  (21) and (22) 
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8 ~ <0 ,  8" < o ,  8** < 0  for ff <e~ (23) 

If fi > e 2, then the m a x i m u m  values  of the magni tudes ~*,-3~ for  ~< 2 and ~g~ ~** for  a > 2, obtained when 
u m =A, a r e  pos i t ive .  With i n c r e a s e  of u m in the f i r s t  case  and with d e c r e a s e  of u m in the second ca se ,  these  
magni tudes d e c r e a s e .  The va lues  u m = B  and 0 =0 o at which one of the magni tudes~  ~ ~*, or  $** beco mes  
ze ro ,  that  is ,  ~ =~ '  =0, a r e  de te rmined  in accordance  with (15) f r o m  the following re la t ionsh ips :  

= (0o-- i)-~ e e~ b = (0o -- i)-~ 0o ~, B = bv'~ (24) 

F r o m  (24) for  fl >e  2 we obtain two va lues  000) (8) >2 and00 (2) (B) <2,  and through these  we a t so  obtain 
4 < b 1 (fl) < b 2 (fi) and B 1 and B 2 which c o r r e s p o n d  to them.  We will  note that in o r d e r  to cons t ruc t  g raphs  00 (1,2) 
(B) and bl, 2 (fl) i t  is suff ic ient  to cons t ruc t  the cor responding  curves  fl (00) and fi (b) f r o m  (24), where  

(b) = [~]2b (i _-4- V ~ )  -- t] -1 exp [~]~b (i --~ V:f ------4~)l (25) 

I t  iS poss ib le  a l so  to obtain the following approx ima ted  expres s ions  for  t~,~: 

B, ~ a -~ [In~ + i -~- M (In~ -~ i)], B~ ~ ~-~ [~e -~ § I N i/~ (~}e-~ _~ t)-~] (26) 

From (18) and (24) it  can be found that 

00(~)<0~(')<0 for a</~(~) ,  0 < 0  (~) <00 (~) for o>os(t3) 

0o(2)< O, 00(i) > O for o~ < z < % (27) 

Here  c% and c% a re  functions obtained f r o m  

(a) == (~ -- 1) exp IcY / (q -- t)] 

where  u<2  and or>2, r e spec t ive ly .  

. .  F r o m  (27), (19), and (20) it  follows that if or<o-2, then when u m = B l ,  00(I) =0 % .~~ and when urn=B2, 
0(o 2~ =0" ,  ,~*=0. I f  cr~<~<u~, then, in dist inction f r o m  the case  where  u m = B l ,  00 (l) =0"*, ~**=0 .  If z>z~,  

then when u m = B1, 0 t t) = 0 * *, #*  * = 0, and when u m = B2, 0 t ~) = 00, $~ = 0. 

S imi la r ly  we will  obtain ((rl_ ? (fl) given in Fig.  5) 

A "< B~ < Bs < @ for (s < (r~, A < BI < O < B ~ fO~ ~<(~<~ 
B I < A < ~ O < B  ~ for % < q < 2 ,  B , < O  < A < B ~  for 2 < ~ < : a ~  (28) 
B I < O ~ . B . z < A  for aa<a.<a~, O < B I < B 2 . < A  for  z:>a~ (~:>e~) 
A < O  for a < 2 ,  O < A  for a > 2  (fi<e~) 

In acco rdance  with (27) and (28), on the bas i s  of the s t a t emen t  given above it  is poss ib le  to e s t ab l i sh  
twelve different  types  of cu rves  ,.~ (O) and consequently a l so  ~ (~) (Figs .  1 and 2) and a l so  ~o (~) f r o m  (14) 
(Figs .  3 and 4), which include al l  the poss ib le  va lues  of Um, (r, and fi (Table 1). We note that  q~ (,~) as  s een  
f r o m  the l as t  re la t ionship  of (14) is e x p r e s s e d  through 0 (~) in an e l e m e n t a r y  manne r .  In pa r t i cu l a r ,  i t  fo l -  
lows a t  once f r o m  this that  0 ($) and ~ (~) have genera l ly  ve r t i c a l  tangents  (where ,~=~*, ,~~ ~**). For  s i m -  
pl ici ty the points Um, | and a u m in F igs .  1-4  a r e  fixed. Hence it is n e c e s s a r y  to ment ion that  in the case  
of di f ferent  urn, | and a they have a different  va lue .  The m a x i m u m  ~ and the m i n i m u m  ~ of the ef fec t ive  
r a t e  of r eac t ion  ~ (~), r e ached  a t  ,~I and ~ ,  a r e  equal  in accordance  with (14) and (15) to the m a x i m u m  and 
m i n i m u m  of the function �9 C0) f r o m  (15), obtained with 01 and 02, that  is ,  

~1,~ = exp  01,~, x}~,~ = 0~,~ ~ ~ - ~  exp  0~, 2 exp.0~, s = (0~,~ - -  u~n ~- i)  ~ (~ - -  t)-~ 

Hence,  for  example ,  the r e s u l t  is that when urn> |  (Fig. 4) the function ~p (,~) does not have e x t r e m e  
va lues .  

F r o m  Figs .  1 to 4 it follows that  in the case  0 -<U~Um, i .e . ,  where  0-~--<UmY , the functions 0 (~) and 
~p (~) in (14) a r e  de te rmined  for  al l  0 -<T-~l .  Hence in cases  1, 6, 1 ! ,  and 12 (Table t)  they a r e  single va lued  
fo r  any y, and in ca se s  2 and 10 they a r e  single va lued  only fo r  ~ < ~  ~  In the r ema in ing  ca se s  the cum, e s  
0 (~) and q~ (~) have th ree  b ranches  a t  ce r t a in  in te rva l s  of va r i a t i on  of ~. 

In accordance  with [7, 9, 11], the s t e a d y - s t a t e  beat ings 0 of the ca t a lys t  su r face  a r e  s table  if  d0/d~ > 0, 
and unstable if d 0 / d ~ < 0 .  

Hence we find that  i f  urn< | (Figs .  1 and 3), then one branch  0 (#) and, consequently,  a l so  ~ (~) a r e  a l -  
ways  s table ,  and of the th ree  only two a r e  s table :  the f i r s t  below (~k) co r r e sponds  to the kinet ic  condit ions 
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in which 0 and `9 a re  close to each other ,  and the other  (q~d) cor responds  to diffusion conditions, accompanied 
by s t rong heating 0 of the catalyst  (if 0 <u m, we will call  them lower diffusion conditions, and if 0>urn, we 
will call  them upper diffusion conditions). 

If urn> O (Figs.  2 and4) ,  then of the th ree  branches  only one is stable: the kinetic branch in cases  7 
and 8 and the upper  diffusion branch in cases  8-10. One branch i s  always unstable (cases 11 and 12). 

Thus in cases  11 and 12 there  is not one stable s teady-s ta te  condition in the r eac to r s  examined.  

For  each steady state ,  0 ($) has a fully de termined value,  and the re fo re  in accordance with the 
preceding,  6(`9) and consequently ~ (,9) in (14) also a re  r ep r e sen t ed  he re  as  single-valued, bounded, smooth 
or  p iecewise - smooth  functions with discontinuit ies of the f i r s t  kind (corresponding to the possible change- 
over  of 0 (`9) at ce r ta in  sect ions of the var ia t ion  of `9 f r o m  one of the exist ing branches  to the other) .  

It can be shown that in the case  of any function r (u% v~,) > 0 of the type indicated above, which is de- 
t e rmined  over  a corresponding interval ,  the re  exis ts  a single solution of the inverse  problem (14) and (16) 
for  the case  in which ~/ (i.e., the maximum t empera tu re  in the l aye r  or  the finite concentration) is given 
and the length of the l aye r  I is de te rmined  (for ~,=1, additional r equ i remen t s  a re  applied, which, in the case  
t = 1 ,  when r  (u~,), a r e  reduced  to q~ (u m) ~-0, ~ '  (urn)<0). For  the smooth function r (u?, v-),) th i swas  shown 
in [51. 

In the case  of continuous var ia t ion  of % the values  l (~,) v a ry  continuously, and, if r (u% vT) is de te r -  
mined for  any 0-<~/-<1, then with var ia t ion  of ~, f rom 0 to 1 the value of I (~,) covers  the whole interval  
[0, co]. Consequently,  the solution of the s t ra ight  problem (l is given, y is determined) always exis ts ,  i .e . ,  
in r e a c t o r s  of a r b i t r a r y  length at l ea s t  one steady state  is possible .  If r (u% v~,) is determined,  for  ex-  
ample,  only in the case  of 0-<~'-<T ~,then the corresponding conditions ex is t  only in the case  l < 11, where  
l l=max l (~,) for  0-<~-<~, 1. 

As a r e s u l t  we find that in case  1, in r e a c t o r s  of a r b i t r a r y  length l ,  only kinetic sys tems  in which 
the ca ta lys t  t empera tu re  0 and the t empera tu re  of the flow $ a re  c lose to each other  a re  rea l ized .  These  
conditions, which a re  usually l ow- t empera tu re  conditions, a re  used more  often in chemical  technology. 

In case  5 the kinetic conditions also exis t  a t  any l .  Together  with these ,  in the case  l < 1 ** (a) upper 
diffusion conditions a re  also possible;  these a re  accompanied by v e ry  s trong heating (8 >u m) of the catalyst  
(l ** = max 1 (~/) when 0 < %,<,9**/Um, q~ =(Pd (u,/). Moreover ,  t h e r e  a re  sti l l  infinitely many mixed steady 
s ta tes ,  in which case ,  in the sect ion 0<`9<`9** along the l aye r  of the catalyst ,  the kinetic conditions a l t e r -  
nate with the upper  diffusion conditions. In other  words  in this case ,  in rea l iz ing  kinetic conditions the re  
is the danger of ignition of separa te  par t s  of the ca ta lys t  (owing to random disturbances) .  In rea l iz ing the 
upper diffusion conditions, there  is ,  correspondingly ,  a danger of extinction. This is conf i rmed by the nu- 
me r i c a l  calculat ions c a r r i e d  out in [13]. 

In cases  2-4,  7, and 8 the kinetic conditions ex is t  only in r e a c t o r s  whose length is l < l*  (a) ( / * = m a x  l 
(7) > l (̀ 9 */u m) when 0<%'<,9*/urn, ~ = ~ k  (u~,). Hence in case  7 there  a re  no other  conditions, and in the case  
l > l * the s teady-s ta te  conditions a re  genera l ly  impossible  (without calculating they a re  known to be unstable), 
and explosion takes place.  In case 8, as dist inct  f r o m  case  7, when a > a * *  (l) and 1 ~ ( a ) < / < l * *  (a) upper 
diffusion conditions a re  sti l l  possible (a**, l ~ a re  cer ta in  values  which can be determined).  In case 3, lower 
diffusion conditions a re  st i l l  possible  together  with kinetic conditions (when l < l*) in r e ac to r s  of a rb i t r a ry  
length l ;  under  these diffusion conditions there  is considerable  heating of the catalyst ,  but it  does not ex-  
ceed  the adiabatic heating of the reac t ing  mixture  in the case  of complete  convers ion (O0~ <Um). These  
a r e  a lso mixed steady s ta tes  in which the above-ment ioned conditions a l te rna te  on the corresponding par t s  
of the cata lyst .  Case 2 d i f fe rs  f rom case  3 in that he re  there  a re  the kind of l ~ (a) and a* (l) values  forwhich 
only kinetic conditions a re  possible when l < l ~ bu t fo r  which only mixed conditions are  possible when 1 -> 
/*,  a< a*. In case 4, as distinct f r om case  2, there  a re  also upper diffusion conditions together with kinetic 
conditions when l < l**.  (It can be shown that lower diffusion conditions a re  absent  when l < l**.) The pos -  
sibil i ty of mixed s ta tes  with changeover  to the upper  diffusion condition also appears .  

In case  6 there  a re  only lower diffusion conditions in r e a c t o r s  of a r b i t r a r y  length. 

In case  9 the s teady-s ta te  conditions, which a re  upper diffusion conditions here ,  a re  possible only 
in r e a c t o r s  of length l < / * * ,  and in case  10 they a re  only possible if a > a * *  and /~ l < l**. 

On the basis  of Table 1 and taking into account (18), (24)-(26), (12), and (6), it is possible,  in p a r -  
t i cu la r ,  to evaluate the l imi ts  up to which e i ther  the concentrat ion C_ of the determining reagent  in the initial 
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flow must be reduced, the effective coefficients fil ands1 ~  the heat and mass transfer from the surface of 
the grains must be increased (for example, by turbulence of the flow), or the activity of the catalyst (k 0) 
must be reduced, so that in the examined system only kinetic systems are realized. (in the f i rs t  case the 
value u m is reduced, but in the second and third case~ A, | t31, 2 are increased.) 

We will also note that the values 0* and ~*, for example, can be described here as ignition temper-  
atures of the catalyst, since these are maximum temperatures which can be reached by the catalyst and 
the flow, respectively, in the case of a kinetic condition. In the case of higher temperature values, either 
only diffusion conditions can be realized (cases 2-4) accompanied by considerably greater  heating ignition 
of the catalyst (0> 0 ~ where 0~ *) or, in generai, steady-state conditions become impossible (case 7) and 
explosion takes place (unlimited increase of 0). The values ~~ and ~~ in cases 2 and 4 can be describedcor-  
respondingly as the extinction temperatures of the catalyst. 

If Xr then by using the inequalities (13) it is possible to obtain upper and lower estimates for the 
existence of different conditions. 
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